发布时间:2023-03-14 06:59:42 | 三涯网
高考历史科目有很多必背的考点,大家在考前一定要多温习这些知识,争取熟练掌握重要考点,小编整理了历史重要知识点汇总如下,各位考生可以查阅下文,希望可以帮助到大家的复习。
1.战国时期初步形成
法家代表韩非提出建立君主专制中央集权制国家的主张。新兴地主阶级从加强专政和保护封建经济发展的需要,初步确立了君主集权的政治体制。
2.秦朝正式建立
秦始皇统一中国后,把专制主义的决策方式和中央集权的政治制度有机地结合在一起,正式建立了专制主义中央集权的政治制度。
3.西汉巩固
汉景帝、汉武帝解决了王国分权割据的问题。汉武帝又实行了"罢黜百家、独尊儒术"的文化政策,找到了封建专制主义中央集权政治制度所需要的理论基础。从此封建专制主义政治制度基本定型并得以巩固。
4.隋唐完善
实行三省六部制,克服了君权与相权的矛盾;实行科举制,提高了行政效率,扩大了统治基础,使专制主义中央集权制度进一步完善。
先秦
1、西周的兴衰。
2、分封制的内容、实质。
3、全面理解和说明春秋到战国时期我国社会由奴隶社会瓦解到封建制度确立,分裂割据走向统一集权,民族融合局面出现的历史发展趋势在政治、经济、文化上的表现。
4、正确评价春秋战国期间的兼并战争。
5、商鞅变法的背景,内容,作用和实质(是在经济,政治上确立了封建制度。是怎样体现和完成春秋战国以来的历史发展趋势)。
6、战国时封建经济发展的具体成就(铁器、牛耕、水利、手工业和商业)。
7、百家争鸣局面出现的原因,流派,内容,结局。注意儒家,道家和法家。
8、天文、医学和诗经。
9、孔子(重点)、荀子,孟子,韩非和屈原。
高考数学必背的知识点有很多,如圆的标准方程、抛物线标准方程、数列、正弦定理、余弦定理、两角和公式、倍角公式等,这些都是在考试中经常会考到的内容,需要各位同学牢记于心,并能够熟练运用。
圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标
圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F>0
抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py
直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h
正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'
圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2
某些数列前n项和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径
余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角
圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标三涯网
圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0
抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py
直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h
正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'
圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2
圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l
弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r
锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h
斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长
柱体体积公式 V=s*h 圆柱体 V=pi*r2h
一、正余弦定理
正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径
余弦定理:a2=b2+c2-2bc*cosA
二、两角和公式
sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
三、倍角公式
tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
四、半角公式
sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
五、和差化积
2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
更多相关文章关注三涯网:www.sanyazx.com